Abstract

Waterborne illnesses are a leading health concern in refugee and internally displaced person (IDP) settlements where waterborne pathogens often spread through household recontamination of stored water. Ensuring sufficient chlorine residual is important for protecting drinking water against recontamination and ensuring water remains safe up to the point-of-consumption. We used ensembles of artificial neural networks (ANNs) to probabilistically forecast the point-of-consumption free residual chlorine (FRC) concentration and to develop point-of-distribution FRC targets based on the risk of insufficient FRC at the point-of consumption. We built ANN ensemble models using data from three refugee settlements and found that the risk-based FRC targets generated by the ensemble models were consistent with an empirical water safety evaluation, indicating that the models accurately predicted the risk of low point-of-consumption FRC despite all ensemble forecasts being underdispersed even after post-processing. This demonstrates the usefulness of ANN ensembles for generating risk-based point-of-distribution FRC targets to ensure safe drinking water in humanitarian operations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.