Abstract

Ozone is one of the most significant secondary pollutants with numerous negative effects on human health and environment including plants and vegetation. Therefore, more effort is made recently by governments and associations to predict ozone concentrations which could help in establishing better plans and regulation for environment protection. In this study, we use two Artificial Neural Network based approaches (MPL and RBF) to develop, for the first time, accurate ozone prediction models, one for urban and another one for rural area in the eastern part of Croatia. The evaluation of actual against the predicted ozone concentrations revealed that MLP and RBF models are very competitive for the training and testing data in the case of Kopački Rit area whereas in the case of Osijek city, MLP shows better evaluation results with 9% improvement in the correlation coefficient. Furthermore, subsequent feature selection process has improved the prediction power of RBF network.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.