Abstract

An accurate forecasting of tropospheric ozone (O3) concentration is beneficial for strategic planning of air quality. In this study, various forecasting techniques are used to forecast the daily maximum O3 concentration levels at a monitoring station in the Klang Valley, Malaysia. The Box-Jenkins autoregressive integrated moving-average (ARIMA) approach and three types of neural network models, namely, back-propagation neural network, Elman recurrent neural network and radial basis function neural network are considered. The daily maximum data, spanning from 1 January 2011 to 7 August 2011, was obtained from the Department of Environment, Malaysia. The performance of the four methods in forecasting future values of ozone concentrations is evaluated based on three criteria, which are root mean square error (RMSE), mean absolute error (MAE) and mean absolute percentage error (MAPE). The findings show that the Box-Jenkins approach outperformed the artificial neural network methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.