Abstract
Accurate prediction of oil consumption plays a dominant role in oil supply chain management. However, because of the effects of the coronavirus disease 2019 (COVID-19) pandemic, oil consumption has exhibited an uncertain and volatile trend, which leads to a huge challenge to accurate predictions. The rapid development of the Internet provides countless online information (e.g., online news) that can benefit predict oil consumption. This study adopts a novel news-based oil consumption prediction methodology–convolutional neural network (CNN) to fetch online news information automatically, thereby illustrating the contribution of text features for oil consumption prediction. This study also proposes a new approach called attention-based JADE-IndRNN that combines adaptive differential evolution (adaptive differential evolution with optional external archive, JADE) with an attention-based independent recurrent neural network (IndRNN) to forecast monthly oil consumption. Experimental results further indicate that the proposed news-based oil consumption prediction methodology improves on the traditional techniques without online oil news significantly, as the news might contain some explanations of the relevant confinement or reopen policies during the COVID-19 period.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.