Abstract
Poverty is a social-cultural problem that can be categorized into monetary approach, capability approach, social exclusion, and participatory poverty assessment. However, the existing measurement methods are complex, costly, and time-consuming. This research was conducted to forecast poverty using classification methods. Random Forest and Extreme Gradient Boosting (XGBoost) algorithms were applied to forecast poverty since they are supervised learning algorithms that use the ensemble learning approach for classification. Ensemble Learning has improved the classification of poverty and obtained better predictive performance. The results of the algorithms showed the poverty trend, which helped to determine the poverty classification. Hence, this method will help the government to act and produce a specific plan to reduce the poverty rate. It is a strategic move to reduce global poverty, parallel to Goal 1 of Sustainable Development Goal (SDG): No Poverty
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal on Perceptive and Cognitive Computing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.