Abstract

As far as the impact of tropospheric ozone (O 3) on human heath and plant life are concerned, forecasting its daily maximum level is of great importance in Hong Kong as well as other metropolises in the world. This paper proposed a multi-layer perceptron (MLP) model with a novel hybrid training method to perform the forecasting task. The training method synergistically couples a stochastic particle swarm optimization (PSO) algorithm and a deterministic Levenberg–Marquardt (LM) algorithm, which aims at exploiting the advantage of both. The performance of such a hybrid model is further compared with ones obtained by the MLP model trained individually by these two training methods mentioned above. Based on original data collected from two typical monitoring sites with different O 3 formation and transportation mechanism, the simulation results show that the hybrid model is more robust and efficient than the other two models by not only producing good results during non-episodes but also providing better consistency with the original data during episodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.