Abstract
Purpose– The purpose of this paper is to create an endurance index of housing investor sentiment and use it to forecast housing stock returns. This study performs not only in-sample and out-of-sample forecasting, like many previous studies did, but also a true forecasting by using all lag terms of independent variables. In addition, an evaluation procedure is applied to quantify the quality of forecasts.Design/methodology/approach– Using a binomial probability distribution model, this paper creates an endurance index of housing investor sentiment. The index reflects the probability of the high or low stock price being the close price for the Philadelphia Stock Exchange Housing Sector Index. This housing investor sentiment endurance index directly uses housing stock price differentials to measure housing investor reactions to all relevant news. Empirical results in this study suggest that the index can not only play a significant role in explaining variations in housing stock returns but also have decent forecasting ability.Findings– Results of this study reveal the considerable forecasting ability of the index. Monthly forecasts of housing stock returns have an overall accuracy of 51 per cent, while the overall accuracy of 8-quarter rolling forecasts even reaches 84 per cent. In addition, the index has decent forecasting ability on changes in housing prices as suggested by the strong evidence of one-direction causal relations running from the endurance index to housing prices. However, extreme volatility of housing stock returns may impair the forecasting quality.Practical implications– The endurance index of housing investor sentiment is easy to construct and use for forecasting housing stock returns. The demonstrated predictability of the index on housing stock returns in this study can have broad implications on housing-related business practices through providing an effective forecasting tool to investors and analysts of housing stocks, as well as housing policy-makers.Originality/value– Despite different investor sentiment proxies suggested in the previous studies, few of them can effectively predict stock returns, due to some embedded limitations. Many increases and decreases inn prices cancel out each other during the trading day, as many unreliable sentiments cancel out each other. This dynamic process reveals not only investor sentiment but also resilience or endurance of sentiment. It is only long-lasting resilient sentiment that can be built in the closing price. It means that the only feasible way to use investor sentiment contained in stock prices to forecast future stock prices is to detach resilient investor sentiment from stock prices and construct an index of endurance of investor sentiment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.