Abstract
Load forecasting (LF) is an essential factor in power system management. LF helps the utility maximize the utilization of power-generating plants and schedule them both reliably and economically. In this paper, a novel and hybrid forecasting method is proposed, combining a long short-term memory network (LSTM) and neural prophet (NP) through an artificial neural network. The paper aims to predict electric load for different time horizons with improved accuracy as well as consistency. The proposed model uses historical load data, weather data, and statistical features obtained from the historical data. Multiple case studies have been conducted with two different real-time data sets on three different types of load forecasting. The hybrid model is later compared with a few established methods of load forecasting found in the literature with different performance metrics: mean average percentage error (MAPE), root mean square error (RMSE), sum of square error (SSE), and regression coefficient (R). Moreover, a guideline with various attributes is provided for different types of load forecasting considering the applications of the proposed model. The results and comparisons from our test cases showed that the proposed hybrid model improved the forecasting accuracy for three different types of load forecasting over other forecasting techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.