Abstract
All investors are very keen to know about the trend of the Gold price, whether it will rise or fall. In recent times, the price of Gold has become a hot topic for everyone, it fluctuates rapidly from last some months. In this study, we propose a time series model for forecasting the daily Gold price and use the data set of United State Dollars per ounce from Jan 02, 2014 to Jul 03, 2015 for the said purpose. By using the Box-Jenkins methodology, Autoregressive Integrated Moving Average (ARIMA) model is selected and the model selection criterion (AIC and SBC) shows that ARIMA (1,1,0) and (0,1,1) are close to each other for forecasting the daily Gold price. The forecasted values reveal that ARIMA (0,1,1) is more efficient than ARIMA (1,1,0) on the base of model selection criteria’s, Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE) and Root Mean Square Error (RMSE).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.