Abstract
HelMod model allows one to describe how solar modulation affects the propagation of galactic cosmic rays (GCR) through the heliosphere with an accuracy of the level of actual experimental uncertainties. The GCRs mainly constitute the high energy population of the so-called space radiation environment. The model treats the physical processes involved in solar modulation, like diffusion, particle drift, convection and adiabatic energy losses, and it embeds a description of both the inner and outer heliosphere. To obtain the modulated intensities, the model requires the knowledge of a few time-dependent heliospheric quantities, i.e., sunspot number, tilt angle of the neutral current sheet, solar wind speed and density, and interplanetary magnetic field. Using historical records, we present a template-based procedure that allows one to predict the heliospheric parameters for coming years, and, in turn, the forecasted modulated spectra. The forecasting templates reconstruct the typical time variation along with solar cycles and may be tuned to the current solar cycle. We estimate that the uncertainty of the forecasted cosmic rays intensity is below 5% (±10% at 68% C.L.) on average for short time predictions (up to 4 years), and below 15% (±(20-25)% at 68% C.L.) for long time predictions (up to 11 years).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.