Abstract

<span>In this paper, we proposed to make different forecasting models in the University education through the algorithms K-means, K-closest neighbor, neural network, and naïve Bayes, which apply to specific exams of engineering, licensed and scientific mathematical thinking in Saber Pro of Colombia. ICFES Saber Pro is an exam required for the degree of all students who carry out undergraduate programs in higher education. The Colombian government regulated this exam in 2009 in the decree 3963 intending to verify the development of competencies, knowledge level, and quality of the programs and institutions. The objective is to use data to convert into information, search patterns, and select the best variables and harness the potential of data (average 650.000 data per semester). The study has found that the combination of features was: women have greater participation (68%) in Mathematics, Engineering, and Teaching careers, the urban area continues to be the preferred place to apply for higher studies (94%), Internet use increased by 50% in the last year, the support of the family nucleus is still relevant for the support in the formation of the children.</span>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.