Abstract

In this paper, we investigate the statistical properties of the fluctuations of the Chinese Stock Index, and we study the statistical properties of HSI, DJI, IXIC and SP500 by comparison. According to the theory of artificial neural networks, a stochastic time effective function is introduced in the forecasting model of the indices in the present paper, which gives an improved neural network – the stochastic time effective neural network model. In this model, a promising data mining technique in machine learning has been proposed to uncover the predictive relationships of numerous financial and economic variables. We suppose that the investors decide their investment positions by analyzing the historical data on the stock market, and the historical data are given weights depending on their time, in detail, the nearer the time of the historical data is to the present, the stronger impact the data have on the predictive model, and we also introduce the Brownian motion in order to make the model have the effect of random movement while maintaining the original trend. In the last part of the paper, we test the forecasting performance of the model by using different volatility parameters and we show some results of the analysis for the fluctuations of the global stock indices using the model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.