Abstract

Drought prediction is crucial for early risk assessment, preventing negative impacts and the timely implementation of mitigation measures for sustainable water management. This study investigated the relationship between climate variations in three seas and the prediction of December meteorological droughts in South Korea, using the Standardized Precipitation Evapotranspiration Index (SPEI). Climate indices with multiple time lags were integrated into multiple linear regression (MLR) and Random Forest (RF) models and evaluated using Pearson’s correlation coefficients (PCCs) and the Root Mean Square Error (RMSE). The results indicated that the MLR model outperformed RF model in the western inland region with a PCC of 0.52 for predicting SPEI-2. On the other hand, the RF model effectively predicted drought states of ‘moderate drought’ or worse (SPEI < −1) nationwide, achieving an average hit rate of 47.17% and Heidke skill score (HSS) of 0.56, particularly excelling in coastal areas. Nino 3.4 turned out to be the most influential factor for short-period extreme droughts (SPEI-2) with a three-month lag, contributed by the Pacific, Atlantic, and Indian Oceans. For periods of four months or longer, climate variations had a lower predictive value. However, integrating autocorrelation functions to account for the previous month’s drought status improved the accuracy. A HYBRID model, which blends linear and nonlinear approaches, further enhanced reliability, making the proposed model more applicable for drought forecasting in neighboring countries and valuable for South Korea’s drought monitoring system to support sustainable water management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.