Abstract

We investigate parameter recovery and forecast accuracy implications of incorporating alternative-specific constants (ASCs) in the utility functions of vehicle choice models. We compare two methods of incorporating ASCs: (1) a maximum likelihood estimator that computes ASCs post-hoc as calibration constants (MLE-C) and (2) a generalized method of moments estimator that uses instrumental variables (GMM-IV) to correct for price endogeneity. In a synthetic study we observe significant coefficient bias with MLE-C when the price-ASC correlation (endogeneity) is large. GMM-IV successfully mitigates this bias given valid instruments but exacerbates the bias given invalid instruments. Despite greater coefficient bias, MLE-C yields better forecasts than GMM-IV with valid instruments in most of the cases examined, including most cases where the price-ASC correlation present in the estimation data is absent in the prediction data. In a market study of U.S. midsize sedan sales from 2002 – 2006 the GMM-IV model predicts the 1-year-forward market better, but the MLE-C model predicts the 5-year-forward market better. Including an ASC in predictions by any of the methods proposed improves share forecasts, and assuming that the ASC of each new vehicle matches that of its closest competitor vehicle yields the best long term forecasts. We find evidence that the instruments most frequently used in the automotive demand literature may be invalid.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.