Abstract
Prediction and avoidance of intraoperative hypotension (IOH) can lead to less postoperative morbidity. Machine learning (ML) is increasingly being applied to predict IOH. We hypothesize that incorporating demographic and physiological features in an ML model will improve the performance of IOH prediction. In addition, we added a "dial" feature to alter prediction performance. An ML prediction model was built based on a multivariate random forest (RF) trained algorithm using 13 physiologic time series and patient demographic data (age, sex, and BMI) for adult patients undergoing hepatobiliary surgery. A novel implementation was developed with an adjustable, multi-model voting (MMV) approach to improve performance in the challenging context of a dynamic, sliding window for which the propensity of data is normal (negative for IOH). The study cohort included 85% of subjects exhibiting at least one IOH event. Males constituted 70% of the cohort, median age was 55.8years, and median BMI was 27.7. The multivariate model yielded average AUC = 0.97 in the static context of a single prediction made up to 8min before a possible IOH event, and it outperformed a univariate model based on MAP-only (average AUC = 0.83). The MMV model demonstrated AUC = 0.96, PPV = 0.89, and NPV = 0.98 within the challenging context of a dynamic sliding window across 40min prior to a possible IOH event. We present a novel ML model to predict IOH with a distinctive "dial" on sensitivity and specificity to predict first IOH episode during liver resection surgeries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.