Abstract


 
 
 Forecasting time series is crucial for financial research and decision-making in business. The nonlinearity of stock market prices profoundly impacts global economic and financial sectors. This study focuses on modeling and forecasting the daily prices of key stock indices - MASI, CAC 40, DAX, FTSE 250, NASDAQ, and HKEX, representing the Moroccan, French, German, British, US, and Hong Kong markets, respectively. We compare the performance of machine learning models, including Long Short-Term Memory (LSTM), eXtreme Gradient Boosting (XGBoost), and the hybrid LSTM-XGBoost, and utilize the skforecast library for backtesting. Results show that the hybrid LSTM-XGBoost model, optimized using Grid Search (GS), outperforms other models, achieving high accuracy in forecasting daily prices. This contribution offers financial analysts and investors valuable insights, facilitating informed decision-making through precise forecasts of international stock prices.
 
 
 

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.