Abstract

Modeling and forecasting of interest rates has traditionally proceeded in the framework of linear stationary methods such as ARMA and VAR, but only with moderate success. We examine here three methods, which account for several specific features of the real world asset prices such as nonstationarity and nonlinearity. Our three candidate methods are based, respectively, on a combined wavelet artificial neural network (WANN) analysis, a mixed spectrum (MS) analysis and nonlinear ARMA models with Fourier coefficients (FNLARMA). These models are applied to weekly data on interest rates in India and their forecasting performance is evaluated vis-à-vis three GARCH models [GARCH (1,1), GARCH-M (1,1) and EGARCH (1,1)] as well as the random walk model. Both the WANN and MS methods show marked improvement over other benchmark models, and may thus hold out several potentials for real world modeling and forecasting of financial data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.