Abstract
The price of a native currency expressed in terms of another currency is known as a foreign exchange rate. In other terms, a foreign exchange rate compares the value of one currency to that of another. The value of standardized currencies varies with demand, supply, and consumer confidence around the world due to which their values fluctuate over time. To forecast the exchange rate of INR, I have developed a machine learning model. The model was trained to estimate six foreign currency exchange rates against the Indian Rupee using historical data. This model uses Random Forest algorithm to train and predict the values. The suggested system’s predicting performance is assessed and contrasted using statistical metrics. According to the findings, the Random Forest algorithm-based model predicts well and achieves an accuracy of 93.61%. KEYWORDS: Regression, Random Forest, Exchange Rate, INR
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: EPRA International Journal of Research & Development (IJRD)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.