Abstract

Accurately predicting industrial aging processes makes it possible to schedule maintenance events further in advance, ensuring a cost-efficient and reliable operation of the plant. So far, these degradation processes were usually described by mechanistic or simple empirical prediction models. In this paper, we evaluate a wider range of data-driven models, comparing some traditional stateless models (linear and kernel ridge regression, feed-forward neural networks) to more complex recurrent neural networks (echo state networks and LSTMs). We first examine how much historical data is needed to train each of the models on a synthetic dataset with known dynamics. Next, the models are tested on real-world data from a large scale chemical plant. Our results show that recurrent models produce near perfect predictions when trained on larger datasets, and maintain a good performance even when trained on smaller datasets with domain shifts, while the simpler models only performed comparably on the smaller datasets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call