Abstract

This paper discusses the prediction of the inflation rate in Indonesia. The data used in this research is assumed to have both linear and non-linear components. The ARIMA model is selected to accommodate the linear component, while the ANFIS method accounts for the non-linear component in the inflation data. Thus, the model is known as the hybrid ARIMA-ANFIS model. The clustering method is performed in the ANFIS model using Fuzzy C-Mean (FMS) with a Gaussian membership function. Consider 2 to 6 clusters. The optimal number of clusters is assessed according to the minimum value of the error prediction. To evaluate the performance of the fitted hybrid ARIMA-ANFIS model, it can be compared to the classical ARIMA model and with the ordinary ANFIS model. The result reveals that the best ARIMA model for inflation prediction in Indonesia is ARIMA(2,1,0). In the hybrid ARIMA(2,1,0)-ANFIS model, two clusters are optimal. Meanwhile, the optimum number of clusters in the ordinary ANFIS model is six. The comparison of prediction accuracy confirms that the hybrid model is superior to the individual model alone of either ARIMA or ANFIS model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.