Abstract

The forecasting problem for a stationary and ergodic binary time series {X n }n=0∞ is to estimate the probability that Xn+1=1 based on the observations X i , 0≤i≤n without prior knowledge of the distribution of the process {X n }. It is known that this is not possible if one estimates at all values of n. We present a simple procedure which will attempt to make such a prediction infinitely often at carefully selected stopping times chosen by the algorithm. We show that the proposed procedure is consistent under certain conditions, and we estimate the growth rate of the stopping times.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.