Abstract
We extract elliptically symmetric principal components from a panel of 17 OECD exchange rates and use the deviations from the components to forecast future exchange rate movements, following the method in Engel et al. (2015). Instead of using standard factor models, we apply elliptically symmetric principal component analysis (ESPCA), introduced by Solat and Spanos (2018), which captures both contemporaneous and temporal co-variation among the exchange rates. We find that ESPCA is more accurate than forecasts generated by existing standard methods and the random walk model, with or without including macroeconomic fundamentals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.