Abstract
This study forecasts the volatility of two energy futures markets (oil and gas), using high-frequency data. We, first, disentangle volatility into continuous volatility and jumps. Second, we apply wavelet analysis to study the relationship between volume and the volatility measures for different horizons. Third, we augment the heterogeneous autoregressive (HAR) model by nonlinearly including both jumps and volume. We then propose different empirical extensions of the HAR model. Our study shows that oil and gas volatilities nonlinearly depend on public information (jumps), private information (continuous volatility), and trading volume. Moreover, our threshold augmented HAR model with heterogeneous jumps and continuous volatility outperforms HAR model in forecasting volatility.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.