Abstract
Abstract The increasing availability of financial market data at intraday frequencies has not only led to the development of improved volatility measurements but has also inspired research into their potential value as an information source for volatility forecasting. In this paper, we explore the forecasting value of historical volatility (extracted from daily return series), of implied volatility (extracted from option pricing data) and of realised volatility (computed as the sum of squared high frequency returns within a day). First, we consider unobserved components (UC-RV) and long memory models for realised volatility which is regarded as an accurate estimator of volatility. The predictive abilities of realised volatility models are compared with those of stochastic volatility (SV) models and generalised autoregressive conditional heteroskedasticity (GARCH) models for daily return series. These historical volatility models are extended to include realised and implied volatility measures as explanatory variables for volatility. The main focus is on forecasting the daily variability of the Standard & Poor's 100 (S&P 100) stock index series for which trading data (tick by tick) of almost 7 years is analysed. The forecast assessment is based on the hypothesis of whether a forecast model is outperformed by alternative models. In particular, we will use superior predictive ability tests to investigate the relative forecast performances of some models. Since volatilities are not observed, realised volatility is taken as a proxy for actual volatility and is used for computing the forecast error. A stationary bootstrap procedure is required for computing the test statistic and its p-value. The empirical results show convincingly that realised volatility models produce far more accurate volatility forecasts compared to models based on daily returns. Long memory models seem to provide the most accurate forecasts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.