Abstract

This paper introduces methodologies in forecasting oil prices (Brent and WTI) with multivariate time series of major S&P 500 stock prices using Gaussian process modeling, deep learning, and vine copula regression. We also apply Bayesian variable selection and nonlinear principal component analysis (NLPCA) for data dimension reduction. With a reduced number of important covariates, we also forecast oil prices (Brent and WTI) with multivariate time series of major S&P 500 stock prices using Gaussian process modeling, deep learning, and vine copula regression. To apply real data to the proposed methods, we select monthly log returns of 2 oil prices and 74 large-cap, major S&P 500 stock prices across the period of February 2001–October 2019. We conclude that vine copula regression with NLPCA is superior overall to other proposed methods in terms of the measures of prediction errors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.