Abstract

This paper is an investigation into the determinants of asymmetries in stock returns. We develop a series of cross-sectional regression specifications which attempt to forecast skewness in the daily returns of individual stocks. Negative skewness is most pronounced in stocks that have experienced: 1) an increase in trading volume relative to trend over the prior six months; and 2) positive returns over the prior thirty-six months. The first finding is consistent with the model of Hong and Stein (1999), which predicts that negative asymmetries are more likely to occur when there are large differences of opinion among investors. The latter finding fits with a number of theories, most notably Blanchard and Watson's (1982) rendition of stock-price bubbles. Analogous results also obtain when we attempt to forecast the skewness of the aggregate stock market, though our statistical power in this case is limited.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.