Abstract

BackgroundCOVID-19 has been one of the most serious global health crises in world history. During the pandemic, health care systems require accurate forecasts for key resources to guide preparation for patient surges. Forecasting the COVID-19 hospital census is among the most important planning decisions to ensure adequate staffing, number of beds, intensive care units, and vital equipment.ObjectiveThe goal of this study was to explore the potential utility of local COVID-19 infection incidence data in developing a forecasting model for the COVID-19 hospital census.MethodsThe study data comprised aggregated daily COVID-19 hospital census data across 11 Atrium Health hospitals plus a virtual hospital in the greater Charlotte metropolitan area of North Carolina, as well as the total daily infection incidence across the same region during the May 15 to December 5, 2020, period. Cross-correlations between hospital census and local infection incidence lagging up to 21 days were computed. A multivariate time-series framework, called the vector error correction model (VECM), was used to simultaneously incorporate both time series and account for their possible long-run relationship. Hypothesis tests and model diagnostics were performed to test for the long-run relationship and examine model goodness of fit. The 7-days-ahead forecast performance was measured by mean absolute percentage error (MAPE), with time-series cross-validation. The forecast performance was also compared with an autoregressive integrated moving average (ARIMA) model in the same cross-validation time frame. Based on different scenarios of the pandemic, the fitted model was leveraged to produce 60-days-ahead forecasts.ResultsThe cross-correlations were uniformly high, falling between 0.7 and 0.8. There was sufficient evidence that the two time series have a stable long-run relationship at the .01 significance level. The model had very good fit to the data. The out-of-sample MAPE had a median of 5.9% and a 95th percentile of 13.4%. In comparison, the MAPE of the ARIMA had a median of 6.6% and a 95th percentile of 14.3%. Scenario-based 60-days-ahead forecasts exhibited concave trajectories with peaks lagging 2 to 3 weeks later than the peak infection incidence. In the worst-case scenario, the COVID-19 hospital census can reach a peak over 3 times greater than the peak observed during the second wave.ConclusionsWhen used in the VECM framework, the local COVID-19 infection incidence can be an effective leading indicator to predict the COVID-19 hospital census. The VECM model had a very good 7-days-ahead forecast performance and outperformed the traditional ARIMA model. Leveraging the relationship between the two time series, the model can produce realistic 60-days-ahead scenario-based projections, which can inform health care systems about the peak timing and volume of the hospital census for long-term planning purposes.

Highlights

  • severe acute respiratory syndrome (SARS)-CoV-2 is a novel member of the coronavirus family, and infections in humans can result in the disease COVID-19

  • The mean absolute percentage error (MAPE) of the autoregressive integrated moving average (ARIMA) had a median of 6.6% and a 95th percentile of 14.3%

  • In the worst-case scenario, the COVID-19 hospital census can reach a peak over 3 times greater than the peak observed during the second wave

Read more

Summary

Introduction

SARS-CoV-2 is a novel member of the coronavirus family, and infections in humans can result in the disease COVID-19. An estimated 25%-30% of patients admitted to hospitals require intensive care admission [2]. At the end of December 2020, SARS-CoV-2 had resulted in over 82 million documented cases and nearly 2 million deaths [4]. COVID-19 has been one of the most serious global health crises in world history. Health care systems require accurate forecasts for key resources to guide preparation for patient surges. Forecasting the COVID-19 hospital census is among the most important planning decisions to ensure adequate staffing, number of beds, intensive care units, and vital equipment

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call