Abstract
An accurate forecasting model for the price volatility of minerals plays a vital role in future investments and decisions for mining projects and related companies. In this paper, a hybrid model is proposed to provide an accurate model for forecasting the volatility of copper prices. The proposed model combines the adaptive neuro-fuzzy inference system (ANFIS) and genetic algorithm (GA). Genetic algorithms are used for estimating the ANFIS model parameters. The results of the proposed model are compared to other models, including ANFIS, support vector machine (SVM), generalized autoregressive conditional heteroscedasticity (GARCH), and autoregressive integrated moving average (ARIMA) models. The empirical results confirm the superiority of the hybrid GA–ANFIS model over other models. The proposed model also improves the forecasting accuracy obtained from the ANFIS, SVM, GARCH, and ARIMA models by a 62.92%, 36.38%, 91.72%, and 42.19% decrease in mean square error, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.