Abstract

AbstractThis paper aims to study the volatility forecasting of Chinese crude oil futures from the large‐scale variables perspective by considering both the information on international futures markets volatility and technical indicators of Chinese crude oil futures. We employ the dual feature processing method (LASSO‐PCA) by integrating least absolute shrinkage and selection operator (LASSO) and principal component analysis (PCA) to extract important factors of the large‐scale exogenous variables. Besides the traditional ordinary least squares (OLS) estimation, the nonlinear support vector regression (SVR) approach is employed to integrate with the LASSO‐PCA method. The empirical results show that both the OLS and SVR combined with LASSO‐PCA can improve the forecasting accuracy, especially SVR‐LASSO‐PCA owns the best forecasting performance. The analysis of the selected variables finds international futures volatility is chosen more frequently. These results are further validated through a series of robust experiments. Finally, the time difference between China and the United States is also considered in order to obtain more reasonable out‐of‐sample forecasting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.