Abstract

This study aims to evaluate forecasting properties of classic methodologies (ARCH and GARCH models) in comparison with deep learning methodologies (MLP, RNN, and LSTM architectures) for predicting Bitcoin's volatility. As a new asset class with unique characteristics, Bitcoin's high volatility and structural breaks make forecasting challenging. Based on 2753 observations from 08-09-2014 to 01-05-2022, this study focuses on Bitcoin logarithmic returns. Results show that deep learning methodologies have advantages in terms of forecast quality, although significant computational costs are required. Although both MLP and RNN models produce smoother forecasts with less fluctuation, they fail to capture large spikes. The LSTM architecture, on the other hand, reacts strongly to such movements and tries to adjust its forecast accordingly. To compare forecasting accuracy at different horizons MAPE, MAE metrics are used. Diebold–Mariano tests were conducted to compare the forecast, confirming the superiority of deep learning methodologies. Overall, this study suggests that deep learning methodologies could provide a promising tool for forecasting Bitcoin returns (and therefore volatility), especially for short-term horizons.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.