Abstract

AbstractStatistics and analytic methods are becoming increasingly important in basketball. In particular, predicting players' performance using past observations is a considerable challenge. The purpose of this study is to forecast the future behavior of basketball players. The available data are sparse functional data, which are very common in sports. So far, however, no forecasting method designed for sparse functional data has been used in sports. A methodology based on two methods to handle sparse and irregular data, together with the analogous method and functional archetypoid analysis is proposed. Results in comparison with traditional methods show that our approach is competitive and additionally provides prediction intervals. The methodology can also be used in other sports when sparse longitudinal data are available.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.