Abstract
I argue that hazard models are more appropriate for forecasting bankruptcy than the single-period models used previously. Single-period bankruptcy models give biased and inconsistent probability estimates while hazard models produce consistent estimates. I describe a simple technique for estimating a discrete-time hazard model with a logit model estimation program. Applying my technique, I find that about half of the accounting ratios that have been used in previous models are not statistically significant bankruptcy predictors. Moreover, several market-driven variables are strongly related to bankruptcy probability, including market size, past stock returns, and the idiosyncratic standard deviation of stock returns. I propose a model that uses a combination of accounting ratios and market-driven variables to produce more accurate out-of-sample forecasts than alternative models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.