Abstract

We use a variant of machine learning (ML) to forecast Australia's automobile gasoline demand within an autoregressive and structural model. By comparing the outputs of various model specifications, we find that training set selection plays an important role in forecasting accuracy. More specifically, however, the performance of training sets starting within identified systematic patterns is relatively worse, and the impact on forecast errors is substantial. We explain these systematic variations in machine learning performance, and explore the intuition behind the ‘black-box’ with the support of economic theory. An important finding is that these time points coincide with structural changes in Australia's economy. By examining the out-of-sample forecasts, the model's external validity can be demonstrated under normal situations; however, its forecasting performance is somewhat unsatisfactory under event-driven uncertainty, which calls on future research to develop alternative models to depict the characteristics of rare and extreme events in an ex-ante manner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.