Abstract
The research aimed to use Generalized Space Time Autoregressive (GSTAR) and GSTARX modeling with the Seemingly Unrelated Regression (SUR) approach and combine them with the Kriging interpolation technique in an unobserved location. The case study was coffee borer beetle forecasting in Probolinggo Regency, East Java, Indonesia, with Watupanjang Village as the unobserved location. The results show that GSTAR-SUR Kriging and GSTARX-SUR Kriging models can predict coffee borer beetle attacks in unobserved areas with high accuracy. It is indicated by the Mean Absolute Percentage Error (MAPE) values of less than 10%. The addition of exogenous variables (rainfall) into the model is proven to improve the accuracy of the model. The Root-Mean-Square Error (RMSE) value of the GSTARX-SUR Kriging model is smaller than the GSTAR-SUR Kriging model. The structure of the model produced from the research, GSTARX-SUR (1,[1,12])(10,0,0), can be used as a reference in modeling coffee borer beetle attacks in other regencies. Map of forecasting coffee borer beetle attack shows that the spread of coffee borer beetle attack is spatial clustering with the attack center located in the eastern region of Probolinggo Regency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ComTech: Computer, Mathematics and Engineering Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.