Abstract

This paper develops a new approach to change-point modeling that allows for an unknown number of change points in the observed sample. Our model assumes that regime durations have a Poisson distribution. The model approximately nests the two most common approaches: the time-varying parameter model with a change point every period and the change-point model with a small number of regimes. We focus on the construction of reasonable hierarchical priors both for regime durations and for the parameters that characterize each regime. A Markov Chain Monte Carlo posterior sampler is constructed to estimate a change-point model for conditional means and variances. We find that our techniques work well in an empirical exercise involving U.S. inflation and GDP growth. Empirical results suggest that the number of change points is larger than previously estimated in these series and the implied model is similar to a time-varying parameter model with stochastic volatility.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.