Abstract
Incidence and mortality rates are considered as a guideline for planning public health strategies and allocating resources. We apply functional data analysis techniques to model age-specific brain cancer mortality trend and forecast entire age-specific functions using exponential smoothing state-space models. The age-specific mortality curves are decomposed using principal component analysis and fit functional time series model with basis functions. Nonparametric smoothing methods are used to mitigate the existing randomness in the observed data. We use functional time series model on age-specific brain cancer mortality rates and forecast mortality curves with prediction intervals using exponential smoothing state-space model. We also present a disparity of brain cancer mortality rates among the age groups together with the rate of change of mortality rates. The data were obtained from the Surveillance, Epidemiology and End Results (SEER) program of the United States. The brain cancer mortality rates, classified under International Classification Disease code ICD-O-3, were extracted from SEER*Stat software.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.