Abstract
This paper assesses the forecasting performance of count data models applied to arts attendance. We estimate participation models for two artistic activities that differ in their degree of popularity – museums and jazz concerts – with data derived from the 2002 release of the Survey of Public Participation in the Arts for the United States. We estimate a finite mixture model – a zero-inflated negative binomial model – that allows us to distinguish between “true” non-attendants and “goers” and their respective behaviour regarding participation in the arts. We evaluate the predictive (in-sample) and forecasting (out-of-sample) accuracy of the estimated model using bootstrapping techniques to compute the Brier score. Overall, the results indicate the model performs well in terms of forecasting. Finally, we draw certain policy implications from the model’s forecasting capacity, thereby allowing the identification of target populations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.