Abstract
A feedforward neural network with two hidden layers is used to forecast major and minor disruptive instabilities in TEXT tokamak discharges. Using the experimental data of soft X ray signals as input data, the neural network is trained with one disruptive plasma discharge, and a different disruptive discharge is used for validation. After being properly trained, the networks, with the same set of weights, are used to forecast disruptions in two other plasma discharges. It is observed that the neural network is able to predict the occurrence of a disruption more than 3 ms in advance. This time interval is almost 3 times longer than the one already obtained previously when a magnetic signal from a Mirnov coil was used to feed the neural networks. Visually no indication of an upcoming disruption is seen from the experimental data this far back from the time of disruption. Finally, by observing the predictive behaviour of the network for the disruptive discharges analysed and comparing the soft X ray data with the corresponding magnetic experimental signal, it is conjectured about where inside the plasma column the disruption first started.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.