Abstract

Abstract. Today, commercial microwave radiometer profilers (MWRPs) are robust and unattended instruments providing real-time, accurate atmospheric observations at ~ 1 min temporal resolution under nearly all weather conditions. Common commercial units operate in the 20–60 GHz frequency range and are able to retrieve profiles of temperature, vapour density, and relative humidity. Temperature and humidity profiles retrieved from MWRP data are used here to feed tools developed for processing radiosonde observations to obtain values of forecast indices (FIs) commonly used in operational meteorology. The FIs considered here include K index, total totals, KO index, Showalter index, T1 gust, fog threat, lifted index, S index (STT), Jefferson index, microburst day potential index (MDPI), Thompson index, TQ index, and CAPE (convective available potential energy). Values of FIs computed from radiosonde and MWRP-retrieved temperature and humidity profiles are compared in order to quantitatively demonstrate the level of agreement and the value of continuous FI updates. This analysis is repeated for two sites at midlatitude, the first one located at low altitude in central Europe (Lindenberg, Germany) and the second one located at high altitude in North America (Whistler, Canada). It is demonstrated that FIs computed from MWRPs well correlate with those computed from radiosondes, with the additional advantage of nearly continuous updates. The accuracy of MWRP-derived FIs is tested against radiosondes, taken as a reference, showing different performances depending upon index and environmental situation. Overall, FIs computed from MWRP retrievals agree well with radiosonde values, with correlation coefficients usually above 0.8 (with few exceptions). We conclude that MWRP retrievals can be used to produce meaningful FIs, with the advantage (with respect to radiosondes) of nearly continuous updates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.