Abstract

AbstractThe term jet stream generally refers to a narrow region of intense winds near the top of the midlatitude or subtropical troposphere. It is in the midlatitude jet stream where instabilities and waves may develop into synoptic‐scale systems, which in turn makes accurately resolving the structure of the jet stream and associated features critical for atmospheric development, predictability, and impacts, such as extreme precipitation and winds. Using dropwindsonde observations collected during the Atmospheric River Reconnaissance (AR Recon) campaign from 2020 to 2022, this study assesses the North Pacific jet stream structure in the European Centre for Medium‐Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS). Results show that the IFS has a slow‐wind bias on the lead times assessed, with the strongest winds (≥50 m·s−1) having a bias of up to −1.88 m·s−1 on forecast day 4. Also, the IFS cannot resolve the sharp potential vorticity (PV) gradient across the jet stream and tropopause, and this PV gradient weakens with forecast lead time. Cases with larger wind biases are characterized by higher PV biases and PV biases tend to be larger for cases with a higher horizontal PV gradient. These results suggest that further model‐based experiments are needed to identify and address these biases, which could ultimately yield increased forecast accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.