Abstract

Down syndrome (DS) is the leading genetic cause of intellectual disability and causes early-onset dementia and cerebellar hypoplasia. The prevalence of attention deficit hyperactivity disorder is elevated in children with DS. The aneuploid DS mouse model “Ts65Dn” shows prominent brain phenotypes, including learning and memory deficits, cerebellar hypoplasia, and locomotor hyperactivity. Previous studies indicate that impaired Sonic hedgehog (Shh) signaling contributes to neurological phenotypes associated with DS and neurodegenerative diseases. However, because of a lack of working inducible Shh knock-in mice, brain region-specific Shh overexpression and its effects on cognitive function have not been studied in vivo. Here, with Gli1-LacZ reporter mice, we demonstrated that Ts65Dn had reduced levels of Gli1, a sensitive readout of Shh signaling, in both hippocampus and cerebellum at postnatal day 6. Through site-specific transgenesis, we generated an inducible human Shh knock-in mouse, TRE-bi-hShh-Zsgreen1 (TRE-hShh), simultaneously expressing dually-lipidated Shh-Np and Zsgreen1 marker in the presence of transactivator (tTA). Double transgenic mice “Camk2a-tTA;TRE-hShh” and “Pcp2-tTA;TRE-hShh” induced Shh overexpression and activated Shh signaling in a forebrain and cerebellum, respectively, specific manner from the perinatal period. Camk2a-tTA;TRE-hShh normalized locomotor hyperactivity and improved learning and memory in 3-month-old Ts65Dn, mitigated early-onset severe cognitive impairment in 7-month-old Ts65Dn, and enhanced spatial cognition in euploid mice. Camk2a-tTA;TRE-hShh cohort maintained until 600days old showed that chronic overexpression of Shh in forebrain from the perinatal period had no effect on longevity of euploid or Ts65Dn. Pcp2-tTA;TRE-hShh did not affect cognition but mitigated the phenotype of cerebellar hypoplasia in Ts65Dn. Our study provides the first in vivo evidence that Shh overexpression from the perinatal period protects DS brain integrity and enhances learning and memory in normal mice, indicating the broad therapeutic potential of Shh ligand for other neurological conditions. Moreover, the first inducible hShh site-specific knock-in mouse could be widely used for spatiotemporal Shh signaling regulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.