Abstract
Effective end-organ peripheral vascular resistance responses are critical to blood pressure control while upright, and prevention of syncope (fainting). The Valsalva maneuver (VM) induces blood pressure decreases that evoke baroreflex-mediated vasoconstriction. We characterized beat-to-beat forearm vascular resistance (FVR) responses to the VM in healthy adults, evaluated the impact of age and sex on these responses, and investigated their association with orthostatic tolerance (OT; susceptibility to syncope). We hypothesized that individuals with smaller FVR responses would be more susceptible to syncope. Healthy young (N = 36; 19 women; age 25.4 ± 4.6years) and older (N = 21; 12 women; age 62.4 ± 9.6years) adults performed a supine 40mmHg, 20s VM. Graded 60° head-up-tilt with combined lower body negative pressure continued to presyncope was used to determine OT. Non-invasive beat-to-beat blood pressure and heart rate (finger plethysmography) were recorded continuously. FVR was calculated as mean arterial pressure (MAP) divided by brachial blood flow velocity (Doppler ultrasound) relative to baseline. The VM produces a distinctive FVR pattern that peaks (+137.1 ± 11.6%) in phase 2B (17.5 ± 0.3s) as the baroreflex responds to low-pressure perturbations. This response increased with age overall (p < 0.001) and within male (p = 0.030) and female subgroups (p < 0.001). Maximum FVR during the VM was significantly correlated with maximal tilt FVR (r = 0.364; p = 0.0153) and with OT when expressed relative to the MAP decrease in phase 2A (Max FVR (%)/MAP2A-1; r = 0.337; p = 0.0206). This is the first characterization of FVR responses to the VM. The VM elicits large baroreflex-mediated increases in FVR; small FVR responses to the VM may indicate susceptibility to syncope.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Clinical autonomic research : official journal of the Clinical Autonomic Research Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.