Abstract
The structure and alterations of subducted oceanic lithosphere (e.g., thickness and seismic velocity of oceanic crust) can be obtained by analyzing guided seismic waves generated by earthquakes within the slab (Wadati‐Benioff zone). In northern Chile prominent secondary phases from intermediate‐depth seismicity, observed in the forearc region can be interpreted as guided waves. For the observation of guided waves it is usually required to have stations close to the wave guide, a fact which is not directly given for forearc stations in subduction zone environments. With the help of finite difference simulations we model the decoupling mechanism of guided waves at the contact between the descending oceanic plate and the upper plate crust where the wave guide is opened due to the equalization of seismic velocities. Provided that suited stations are available, this mechanism allows for the use of intermediate depth seismicity to study the shallow subduction zone structure (≤100 km depth).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.