Abstract

Abstract A lagged maximum covariance analysis (MCA) is utilized to investigate large-scale patterns of covariability between sea surface temperature (SST) in the global tropics and 500-mb geopotential height (Z500) in the extratropics at monthly to interannual time scales distinct from the conventional El Niño–Southern Oscillation (ENSO) signal during the Northern Hemisphere (NH) winter. The first MCA mode indicates a strong impact of tropical SST anomalies associated with ENSO on the extratropical atmosphere. The second MCA mode corresponds with coupling between Arctic Oscillation (AO)-like atmospheric variations and tropical SST anomalies. An AO-like MCA mode appears to depict an atmosphere-to-ocean forcing, in which the tropical ocean responds to the higher extratropical AO-like atmospheric anomalies with an intraseasonal time lag. In winter, AO-like atmospheric variability is associated with the northern tropical Atlantic mode and the tropical Pacific ENSO Modoki mode through enhanced or weakened trade winds. The above forced SST anomalies by the AO-like variability may play a role in the subsequent evolution of the conventional ENSO phenomena.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.