Abstract
Abstract An ocean model is used to examine and compare the forcing mechanisms and underlying ocean dynamics of two dominant modes of ocean variability in the northeast Pacific (NEP). The first mode is identified with the Pacific decadal oscillation (PDO) and accounts for the most variance in model sea surface temperatures (SSTs) and sea surface heights (SSHs). It is characterized by a monopole structure with a strong coherent signature along the coast. The second mode of variability is termed the North Pacific Gyre Oscillation (NPGO). This mode accounts for the most variance in sea surface salinities (SSSs) in the model and in long-term observations. While the NPGO is related to the second EOF of the North Pacific SST anomalies (the Victoria mode), it is defined here in terms of SSH anomalies. The NPGO is characterized by a pronounced dipole structure corresponding to variations in the strengths of the eastern and central branches of the subpolar and subtropical gyres in the North Pacific. It is found that the PDO and NPGO modes are each tied to a specific atmospheric forcing pattern. The PDO is related to the overlying Aleutian low, while the NPGO is forced by the North Pacific Oscillation. The above-mentioned climate modes captured in the model hindcast are reflected in satellite altimeter data. A budget reconstruction is used to study how the atmospheric forcing drives the SST and SSH anomalies. Results show that the basinwide SST and SSS anomaly patterns associated with each mode are shaped primarily by anomalous horizontal advection of mean surface temperature and salinity gradients (∇ Tand ∇ S) via anomalous surface Ekman currents. This suggests a direct link of these modes with atmospheric forcing and the mean ocean circulation. Smaller-scale patterns in various locations along the coast and in the Gulf of Alaska are, however, not resolved with the budget reconstructions. Vertical profiles of the PDO and NPGO indicate that the modes are strongest mainly in the upper ocean down to 250 m. The shallowness of the modes, the depth of the mean mixed layer, and wintertime temperature profile inversions contribute to the sensitivity of the budget analysis in the regions of reduced reconstruction skill.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.