Abstract
AbstractWe study generalised quasirandom graphs whose vertex set consists of$q$parts (of not necessarily the same sizes) with edges within each part and between each pair of parts distributed quasirandomly; such graphs correspond to the stochastic block model studied in statistics and network science. Lovász and Sós showed that the structure of such graphs is forced by homomorphism densities of graphs with at most$(10q)^q+q$vertices; subsequently, Lovász refined the argument to show that graphs with$4(2q+3)^8$vertices suffice. Our results imply that the structure of generalised quasirandom graphs with$q\ge 2$parts is forced by homomorphism densities of graphs with at most$4q^2-q$vertices, and, if vertices in distinct parts have distinct degrees, then$2q+1$vertices suffice. The latter improves the bound of$8q-4$due to Spencer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.