Abstract

The fundamental gust modeling assumption is investigated by means of a series of experiments performed in the Purdue Annular Cascade Research Facility. The unsteady periodic flow field is generated by rotating rows of perforated plates and airfoil cascades. In this paper, the measured unsteady flow fields are compared to linear-theory vortical gust requirements, with the resulting unsteady gust response of a downstream stator cascade correlated with linear theory predictions in an accompanying paper. The perforated-plate forcing functions closely resemble linear-theory forcing functions, with the static pressure fluctuations small and the periodic velocity vectors parallel to the downstream mean-relative flow angle over the entire periodic cycle. In contrast, the airfoil forcing functions exhibit characteristics far from linear-theory vortical gusts, with the alignment of the velocity vectors and the static pressure fluctuation amplitudes dependent on the rotor-loading condition, rotor solidity, and the inlet mean-relative flow angle. Thus, these unique data clearly show that airfoil wakes, both compressor and turbine, are not able to be modeled with the boundary conditions of current state-of-the-art linear unsteady aerodynamic theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.