Abstract
Abstract We show that under $\mathsf {BMM}$ and “there exists a Woodin cardinal, $"$ the nonstationary ideal on $\omega _1$ cannot be defined by a $\Pi _1$ formula with parameter $A \subset \omega _1$ . We show that the same conclusion holds under the assumption of Woodin’s $(\ast )$ -axiom. We further show that there are universes where $\mathsf {BPFA}$ holds and $\text {NS}_{\omega _1}$ is $\Pi _1(\{\omega _1\})$ -definable. Lastly we show that if the canonical inner model with one Woodin cardinal $M_1$ exists, there is a generic extension of $M_1$ in which $\text {NS}_{\omega _1}$ is saturated and $\Pi _1(\{ \omega _1\} )$ -definable, and $\mathsf {MA_{\omega _1}}$ holds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.