Abstract
This paper outlines the first known examination of the forces required to jettison a simulated exit used during helicopter underwater egress training (HUET). To capture the forces placed on the simulated cabin exit, a purpose build force plate was designed to replace an existing simulator exit used during HUET. A 25-point map was created to identify specific jettison forces required across the entire exit surface. Ten participants completed a total of 120 underwater egress sequences in–air and in-water from a normal flight and fully compressed crash attenuating seat position. The results indicate that the force required to jettison the simulated exit is significantly different in relationship to location on the exit surface. From the results, it can be concluded that helicopter underwater egress training protocols should ensure that offshore candidates are informed of the different force requirements as well as have the opportunity to practice jettisoning a high physical fidelity exit from a fully compressed crash attenuating seat.Relevance to industry: This is the first paper to investigate the forces required to jettison a simulated S92 exit used in an underwater egress simulator. The combined exit force map and maximal voluntary jettison force data provide a greater understanding of influencing factors associated with training offshore personnel to egress a ditched helicopter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.