Abstract

Forces on a smooth submarine pipeline, fixed horizontally near a plane boundary, have been investigated under random wave conditions. The submarine pipeline was subjected to Pierson-Moskowitz spectrum (P-M spectrum) at various energy levels. The water particle kinematics were computed based on the linear random wave model and the Morison equation was chosen as the wave force predictor model. The inline hydrodynamic coefficients of drag and inertia were evaluated using two different methods, one in the frequency domain and the other in the time domain. Five mathematical formulations were considered for the analysis of transverse wave forces and these were compared in terms of the correlation coefficient. The transverse force was also analyzed in terms of the transverse root mean square (rms) coefficient. The inline hydrodynamic coefficients of drag and inertia and the transverse rms coefficient were correlated with the Keulegan-Carpenter number or period parameter, the relative clearance of the pipeline from the bed and the depth parameter. Finally, the results of the random wave tests were compared with those of regular waves under similar pipeline conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call